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Evidence and Probabilities 

 
 

 
Fundamental concepts: Explicit evidence combination with Bayes’ Rule; Probabilistic 

reasoning via assumptions of conditional independence. 

Exemplary techniques: Naive Bayes classification; Evidence lift. 

So far we have examined several different methods for using data to help draw conclu‐ 

sions about some unknown quantity of a data instance, such as its classification. Let’s 

now examine a different way of looking at drawing such conclusions. We could think 

about the things that we know about a data instance as evidence for or against different 

values for the target. The things that we know about the data instance are represented 

as the features of the instance. If we knew the strength of the evidence given by each 

feature, we could apply principled methods for combining evidence probabilistically to 

reach a conclusion as to the value for the target. We will determine the strength of any 

particular piece of evidence from the training data. 

 

Example: Targeting Online Consumers With 
Advertisements 
To illustrate, let’s consider another business application of classification: targeting online 

display advertisements to consumers, based on what webpages they have visited in the 

past. As consumers, we have become used to getting a vast amount of information and 

services on the Web seemingly for free. Of course, the “for free” part is very often due 

to the existence or promise of revenue from online advertising, similar to how broadcast 

television is “free.” Let’s consider display advertising—the ads that appear on the top, 

sides, and bottom of pages full of content that we are reading or otherwise consuming. 

Display advertising is different from search advertising (e.g., the ads that appear with 

the results of a Google search) in an important way: for most webpages, the user has 

not typed in a phrase related to exactly what she is looking for. Therefore, the targeting 

of an advertisement to the user needs to be based on other sorts of inference. For several 
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chapters now we have been talking about a particular sort of inference: inferring the 

value of an instance’s target variable from the values of the instance’s features. Therefore,  

we could apply the techniques we already have covered to infer whether a particular 

user would be interested in an advertisement. In this chapter we will introduce a different 

way of looking at the problem, that has wide applicability and is quite easy to apply. 

Let’s define our ad targeting problem more precisely. What will be an instance? What 

will be the target variable? What will be the features? How will we get the training data? 

Let’s assume that we are working for a very large content provider (a “publisher”) who 

has a wide variety of content, sees many online consumers, and has many opportunities 

to show advertisements to these consumers. For example, Yahoo! has a vast number of 

different advertisement-supported web “properties,” which we can think of as different 

“content pieces.” In addition, recently (as of this writing) Yahoo! agreed to purchase the 

blogging site Tumblr, which has 50 billion blog posts across over 100 million blogs. Each 

of these might also be seen as a “content piece” that gives some view into the interests 

of a consumer who reads it. Similarly, Facebook might consider each “Like” that a con‐ 

sumer makes as a piece of evidence regarding the consumer’s tastes, which might help 

target ads as well. 

For simplicity, assume we have one advertising campaign for which we would like to 

target some subset of the online consumers that visit our sites. This campaign is for the 

upscale hotel chain, Luxhote. The goal of Luxhote is for people to book rooms. We have 

run this campaign in the past, selecting online consumers randomly. We now want to 

run a targeted campaign, hopefully getting more bookings per dollar spent on ad im‐  

pressions.1
 

Therefore, we will consider a consumer to be an instance. Our target variable will be: 

did/will the consumer book a Luxhote room within one week after having seen the 

Luxhote advertisement? Through the magic of browser cookies,2 in collaboration with 

Luxhote we can observe which consumers book rooms. For training, we will have a 

binary value for this target variable for each consumer. In use, we will estimate the 

probability that a consumer will book a room after having seen an ad, and then, as our 

budget allows, target some subset of the highest probability consumers. 

We are left with a key question: what will be the features we will use to describe the 

consumers, such that we might be able to differentiate those that are more or less likely 

to be good customers for Luxhote? For this example, we will consider a consumer to be 

described by the set of content pieces that we have observed her to have viewed (or 

Liked) previously, again as recorded via browser cookies or some other mechanism. We 

 
 

1. An ad impression is when an ad is displayed somewhere on a page, regardless of whether a user clicks it. 

2. A browser exchanges small amounts of information (“cookies”) with the sites that are visited, and saves site- 

specific information that can be retrieved later by the same website. 



Combining Evidence Probabilistically  |   235  

have many different kinds of content: finance, sports, entertainment, cooking blogs, etc. 

We might pick several thousand content pieces that are very popular, or we may consider 

hundreds of millions. We believe that some of these (e.g., finance blogs) are more likely 

to be visited by good prospects for Luxhote, while other content pieces are seen as less 

likely (e.g., a tractor-pull fan page). 

However, for this exercise we do not want to rely on our presumptions about such 

content, nor do we have the resources to estimate the evidence potential for each content 

piece manually. Furthermore, while humans are quite good at using our knowledge and 

common sense to recognize whether evidence is likely to be “for” or “against,” humans 

are notoriously bad at estimating the precise strength of the evidence. We would like 

our historical data to estimate both the direction and the strength of the evidence. We 

next will describe a very broadly applicable framework both for evaluating the evidence, 

and for combining it to estimate the resulting likelihood of class membership (here, the 

likelihood that a consumer will book a room after having seen the ad). 

It turns out that there are many other problems that fit the mold of our example: clas‐ 

sification/class probability estimation problems where each instance is described by a 

set of pieces of evidence, possibly taken from a very large total collection of possible 

evidence. For example, text document classification fits exactly (which we’ll discuss next 

in Chapter 10). Each document is a collection of words, from a very large total vocabu‐ 

lary. Each word can possibly provide some evidence for or against the classification, and 

we would like to combine the evidence. The techniques that we introduce next are 

exactly those used in many spam detection systems: an instance is an email message, 

the target classes are spam or not-spam, and the features are the words and symbols in 

the email message. 

Combining Evidence Probabilistically 
 

More math than usual ahead 
To discuss the ideas of combining evidence probabilistically, we need 

to introduce some probability notation. You do not have to have 

learned (or remember) probability theory—the notions are quite in‐ 

tuitive, and we will not get beyond the basics. The notation allows us 

to be precise. It might look like there’s a lot of math in what follows, 

but you’ll see that it’s quite straightforward. 

 
We are interested in quantities such as the probability of a consumer booking a room 

after being shown an ad. We actually need to be a little more specific: some particular 

consumer? Or just any consumer? Let’s start with just any consumer: what is the prob‐ 

ability that if you show an ad to just any consumer, she will book a room? As this is our 

desired classification, let’s call this quantity C. We will represent the probability of an 
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event C as p(C). If we say p(C) = 0.0001, that means that if we were to show ads randomly 

to consumers, we would expect about 1 in 10,000 to book rooms.3
 

Now, we are interested in the probability of C given some evidence E, such as the set of 

websites visited by a particular consumer. The notation for this quantity is p(C|E), which 

is read as “the probability of C given E,” or “the probability of C conditioned on E.” This 

is an example of a conditional probability, and the “|” is sometimes called the “condi‐ 

tioning bar.” We would expect that p(C|E) would be different based on different collec‐ 

tions of evidence E—in our example, different sets of websites visited. 

As mentioned above, we would like to use some labeled data, such as the data from our 

randomly targeted campaign, to associate different collections of evidence E with dif‐ 

ferent probabilities. Unfortunately, this introduces a key problem. For any particular 

collection of evidence E, we probably have not seen enough cases with exactly that same 

collection of evidence to be able to infer the probability of class membership with any 

confidence. In fact, we may not have seen this particular collection of evidence at all! In 

our example, if we are considering thousands of different websites, what is the chance 

that in our training data we have seen a consumer with exactly the same visiting patterns 

as a consumer we will see in the future? It is infinitesimal. Therefore, what we will do 

is to consider the different pieces of evidence separately, and then combine evidence. 

To discuss this further, we need a few facts about combining probabilities. 

Joint Probability and Independence 

Let’s say we have two events, A and B. If we know p(A) and p(B), can we say what is the 

probability that both A and B occur? Let’s call that p(AB). This is called the joint prob‐ 

ability. 

There is one special case when we can: if events A and B are independent. A and B being 

independent means that knowing about one of them tells you nothing about the like‐ 

lihood of the other. The typical example used to illustrate independence is rolling a fair 

die; knowing the value of the first roll tells you nothing about the value of the second. 

If event A is “roll #1 shows a six” and event B is “roll #2 shows a six”, then p(A) = 1/6 

and p(B) = 1/6, and importantly, even if we know that roll #1 shows a six, still p(B) = 

1/6. In this case, the events are independent, and in the case of independent events, 

p(AB) = p(A) · p(B)—we can calculate the probability of the “joint” event AB by multi‐ 

plying the probabilities of the individual events. In our example, p(AB) = 1/36. 

However, we cannot in general compute the probabilities of joint events in this way. If 

this isn’t clear, think about the case of rolling a trick die. In my pocket I have six trick 

dice. Each trick die has one of the numbers from one to six on all faces—all faces show 

 

3. This is not necessarily a reasonable response rate for any particular advertisement, just an illustrative example. 

Purchase rates attributable to online advertisements generally seem very small to those outside the industry. 

It is important to realize that the cost of placing one ad often is quite small as well. 
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the same number. I pull a die at random from my pocket, and then roll it twice. In this 

case, p(A) = p(B) = 1/6 (because I could have pulled any of the six dice out with equal 

likelihood). However, p(AB) = 1/6 as well, because the events are completely dependent! 

If the first roll is a six, so will be the second (and vice versa). 

The general formula for combining probabilities that takes care of dependencies be‐ 

tween events is: 

 
Equation 9-1. Joint probability using conditional probability 

p(AB) = p(A) · p(B | A) 

This is read as: the probability of A and B is the probability of A times the probability 

of B given A. In other words, given that you know A, what is the probability of B? Take 

a minute to make sure that has sunk in. 

We can illustrate with our two dice examples. In the independent case, since knowing 

A tells us nothing about p(B), then p(B|A) = p(B), and we get our formula from above, 

where we simply multiply the individual probabilities. In our trick die case, p(B|A) = 

1.0, since if the first roll was a six, then the second roll is guaranteed to be a six. Thus, 

p(AB) = p(A) · 1.0 = p(A) = 1/6, just as expected. In general, events may be completely 

independent, completely dependent, or somewhere in between. In the latter case, know‐ 

ing something about one event changes the likelihood of the other. In all cases, our 

formula p(AB) = p(A) · p(B|A) combines the probabilities properly. 

We’ve gone through this detail for a very important reason. This formula is the basis for 

one of the most famous equations in data science, and in fact in science generally. 

Bayes’ Rule 

Notice that in p(AB) = p(A)p(B|A) the order of A and B seems rather arbitrary—and it 

is. We could just as well have written: 

 
p(AB) = p(B) · p(A | B) 

 
This means: 

 
p(A) · p(B | A) = p(AB) = p(B) · p(A | B) 

 
And so: 

 
p(A) · p(B | A) = p(B) · p(A | B) 



Combining Evidence Probabilistically  |   238  

p(A) 

p(E ) 

If we divide both sides by p(A) we get: 

 

p(B | A) =
 p(A | B) · p(B) 

 
Now, let’s consider B to be some hypothesis that we are interested in assessing the like‐ 

lihood of, and A to be some evidence that we have observed. Renaming with H for 

hypothesis and E for evidence, we get: 

 

p(H | E ) =
 p(E | H ) · p(H ) 

 
This is the famous Bayes’ Rule, named after the Reverend Thomas Bayes who derived 

a special case of the rule back in the 18th century. Bayes’ Rule says that we can compute 

the probability of our hypothesis H given some evidence E by instead looking at the 

probability of the evidence given the hypothesis, as well as the unconditional probabil‐ 

ities of the hypothesis and the evidence. 

 
Note: Bayesian methods 
Bayes’ Rule, combined with the important fundamental principle of 

thinking carefully about conditional independencies, are the founda‐ 

tion for a vast amount of more advanced data science techniques that 

we will not cover in this book. These include Bayesian networks, prob‐ 

abilistic topic models, probabilistic relational models, Hidden Mar‐ 

kov Models, Markov random fields, and others. 

 
Importantly, the last three quantities may be easier to determine than the quantity of 

ultimate interest—namely, p(H|E). To see this, consider a (simplified) example from 

medical diagnosis. Assume you’re a doctor and a patient arrives with red spots. You 

guess (hypothesize) that the patient has measles. We would like to determine the prob‐ 

ability of our hypothesized diagnosis (H = measles), given the evidence (E = red spots). 

In order to directly estimate p(measles|red spots) we would need to think through all 

the different reasons a person might exhibit red spots and what proportion of them 

would be measles. This is likely impossible even for the most broadly knowledgeable 

physician. 

However, consider instead the task of estimating this quantity using the righthand side 

of Bayes’ Rule. 

• p(E|H) is the probability that one has red spots given that one has measles. An expert 

in infectious diseases may well know this or be able to estimate it relatively accu‐ 

rately. 



Applying Bayes’ Rule to Data Science  |   239  

p() 

• p(H) is simply the probability that someone has measles, without considering any 

evidence; that’s just the prevalence of measles in the population. 

• p(E) is the probability of the evidence: what’s the probability that someone has red 

spots—again, simply the prevalence of red spots in the population, which does not 

require complicated reasoning about the different underlying causes, just obser‐ 

vation and counting. 

Bayes’ Rule has made estimating p(H|E) much easier. We need three pieces of informa‐ 

tion, but they’re much easier to estimate than the original value is. 

 
p(E) may still be difficult to compute. In many cases, though, it does 

not have to be computed, because we are interested in comparing the 

probabilities of different hypotheses given the same evidence. We will 

see this later. 

 

Applying Bayes’ Rule to Data Science 
It is possibly quite obvious now that Bayes’ Rule should be critical in data science. Indeed, 

a very large portion of data science is based on “Bayesian” methods, which have at their 

core reasoning based on Bayes’ Rule. Describing Bayesian methods broadly is well be‐ 

yond the scope of this book. We will introduce the most fundamental ideas, and then 

show how they apply in the most basic of Bayesian techniques—which is used a great 

deal. Let’s rewrite Bayes’ Rule yet again, but now returning to classification. 

 
Equation 9-2. Bayes Rule for classification 

p(C = c | ) =
 p( | C = c) · p(C = c) 

In Equation 9-2, we have four quantities. On the lefthand side is the quantity we would 

like to estimate. In the context of a classification problem, this is the probability that the 

target variable C takes on the class of interest c after taking the evidence E (the vector 

of feature values) into account. This is called the posterior probability. 

Bayes’ Rule decomposes the posterior probability into the three quantities that we see 

on the righthand side. We would like to be able to compute these quantities from the 

data: 

1. p(C = c) is the “prior” probability of the class, i.e., the probability we would assign 

to the class before seeing any evidence. In Bayesian reasoning generally, this could 

come from several places. It could be (i) a “subjective” prior, meaning that it is the 
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belief of a particular decision maker based on all her knowledge, experience, and 

opinions; (ii) a “prior” belief based on some previous application(s) of Bayes’ Rule 

with other evidence, or (iii) an unconditional probability inferred from data. The 

specific method we introduce below takes approach (iii), using as the class prior the 

“base rate” of c—the prevalence of c in the population as a whole. This is calculated 

easily from the data as the percentage of all examples that are of class c. 

2. p(E |C = c) is the likelihood of seeing the evidence E—the particular features of the 

example being classified—when the class C = c. One might see this as a “generative” 

question: if the world (the “data generating process”) generated an instance of class 

c, how often would it look like E? This likelihood might be calculated from the data 

as the percentage of examples of class c that have feature vector E. 

3. Finally, p(E) is the likelihood of the evidence: how common is the feature repre‐ 

sentation E among all examples? This might be calculated from the data as the 

percentage occurrence of E among all examples. 

Estimating these three values from training data, we could calculate an estimate for the 

posterior p(C = c| E) for a particular example in use. This could be used directly as an 

estimate of class probability, possibly in combination with costs and benefits as de‐  

scribed in Chapter 7. Alternatively, p(C = c| E) could be used as a score to rank instances 

(e.g., estimating those that are most likely to respond to our advertisement). Or, we 

could choose as the classification the maximum p(C = c| E) across the different values c. 

Unfortunately, we return to the major difficulty we mentioned above, which keeps 
Equation 9-2 from being used directly in data mining. Consider E to be our usual vector 

of attribute values <e1 , e2 , ⋯ , ek>, a possibly large, specific collection of conditions. 

Applying Equation 9-2 directly would require knowing the p(E|c) as p(e1 ∧ e2 ∧ ⋯ ∧ 
ek|c).4 This is very specific and very difficult to measure. We may never see a specific 

example in the training data that exactly matches a given E in our testing data, and even 

if we do it may be unlikely we’ll see enough of them to estimate a probability with any 

confidence. 

Bayesian methods for data science deal with this issue by making assumptions of prob‐ 

abilistic independence. The most broadly used method for dealing with this complica‐ 

tion is to make a particularly strong assumption of independence. 

Conditional Independence and Naive Bayes 

Recall from above the notion of independence: two events are independent if knowing 

one does not give you information on the probability of the other. Let’s extend that 

notion ever so slightly. 

 

 

4. The ∧ operator means “and.” 
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( )p  

Conditional independence is the same notion, except using conditional probabilities. 

For our purposes, we will focus on the class of the example as the condition (since in 

Equation 9-2 we are looking at the probability of the evidence given the class). Condi‐ 

tional independence is directly analogous to the unconditional independence we dis‐ 

cussed above. Specifically, without assuming independence, to combine probabilities 

we need to use Equation 9-1 from above, augmented with the |C condition: 

 
p(AB | C) = p(A | C) · p(B | AC) 

 
However, as above, if we assume that A and B are conditionally independent given C,5

 

we can now combine the probabilities much more easily: 

 
p(AB | C) = p(A | C) · p(B | C) 

 
This makes a huge difference in our ability to compute the probabilities from the data. 

In particular, for the conditional probability p(E |C=c) in Equation 9-2, let’s assume that 

the attributes are conditionally independent, given the class. In other words, in 

p(e1∧e2∧⋯∧ek|c), each ei is independent of every other ej given the class c: 

 
p( | c) = p(e1 ∧ e2 ∧ ⋯ ∧ ek | c) 

= p(e1 | c) · p(e2 | c) ⋯ p(ek | c) 

 
Each of the p(ei | c) terms can be computed directly from the data, since now we simply 

need to count up the proportion of the time that we see individual feature ei in the 

instances of class c, rather than looking for an entire matching feature vector. There are 

likely to be relatively many occurrences of ei.6 Combining this with Equation 9-2 we get 

the Naive Bayes equation as shown in Equation 9-3. 

 
Equation 9-3. Naive Bayes equation 

 

p(c | ) =
 p(e1 | c) · p(e2 | c) ⋯ p(ek | c) · p(c) 

This is the basis of the Naive Bayes classifier. It classifies a new example by estimating 

the probability that the example belongs to each class and reports the class with highest 

probability. 

 

5. This is a weaker assumption than assuming unconditional independence, by the way. 

6. And in the cases where there are not we can use a statistical correction for small counts. The difference is that 

we will not be doing that for all the evidence, as we would have considering the entire E. 
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If you will allow two paragraphs on a technical detail: at this point you might notice the 

p(E) in the denominator of Equation 9-3 and say, whoa there—if I understand you, isn’t 

that going to be almost as difficult to compute as p(E |C)? It turns out that generally 

p(E) never actually has to be calculated, for one of two reasons. First, if we are interested 

in classification, what we mainly care about is: of the different possible classes c, for 

which one is p(C| E) the greatest? In this case, E is the same for all, and we can just look 

to see which numerator is larger. 

In cases where we would like the actual probability estimates, we still can get around 

computing p(E) in the denominator. This is because the classes often are mutually ex‐ 

clusive and exhaustive, meaning that every instance will belong to one and only one 

class. In our Luxhote example, a consumer either books a room or does not. Informally, 

if we see evidence E it belongs either to c0 or c1. Mathematically: 

 
p() = p( ∧ c0) + p( ∧ c1) 

= p( | c0) · p(c0) + p( | c1) · p(c1) 

 
Our independence assumption allows us to rewrite this as: 

 
p() = p(e1 | c0) · p(e2 | c0) ⋯ p(ek | c0) · p(c0) 

+ p(e1 | c1) · p(e2 | c1) ⋯ p(ek | c1) · p(c1) 

 
p() = p(e1 | c0) · p(e2 | c0) ⋯ p(ek | c0) · p(c0) + p(e1 | c1) · p(e2 | c1) ⋯ p(ek | c1) · p(c1) 

 
Combining this with Equation 9-3, we get a version of the Naive Bayes equation with 

which we can compute the posterior probabilities easily from the data: 
 

p(c0 
  p(e1 | c0) · p(e2 | c0) ⋯ p(ek | c0) · p(c0)  

| ) = 
p(e1 | c0) · p(e2 | c0) ⋯ p(ek | c0) + p(e1 | c1) · p(e2 | c1) ⋯ p(ek | c1) 

 

Although it has lots of terms in it, each one is either the evidence “weight” of some 

particular individual piece of evidence, or a class prior. 

Advantages and Disadvantages of Naive Bayes 

Naive Bayes is a very simple classifier, yet it still takes all the feature evidence into 

account. It is very efficient in terms of storage space and computation time. Training 

consists only of storing counts of classes and feature occurrences as each example is 

seen. As mentioned, p(c) can be estimated by counting the proportion of examples of 

class c among all examples. p(ei|c) can be estimated by the proportion of examples in 

class c for which feature ei appears. 
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In spite of its simplicity and the strict independence assumptions, the Naive Bayes clas‐ 

sifier performs surprisingly well for classification on many real-world tasks. This is 

because the violation of the independence assumption tends not to hurt classification 

performance, for an intuitively satisfying reason. Specifically, consider that two pieces 

of evidence are actually strongly dependent—what does that mean? Roughly, that means 

that when we see one we’re also likely to see the other. Now, if we treat them as being 

independent, we’re going to see one and say “there’s evidence for the class” and see the 

other and say “there’s more evidence for the class.” So, to some extent we’ll be double- 

counting the evidence. However, as long as the evidence is generally pointing us in the 

right direction, for classification the double-counting won’t tend to hurt us. In fact, it 

will tend to make the probability estimates more extreme in the correct direction: the 

probability will be overestimated for the correct class and underestimated for the in‐  

correct class(es). But for classification we’re choosing the class with the greatest prob‐ 

ability estimate, so making them more extreme in the correct direction is OK. 

This does become a problem, though, if we’re going to be using the probability estimates 

themselves—so Naive Bayes should be used with caution for actual decision-making 

with costs and benefits, as discussed in Chapter 7. Practitioners do use Naive Bayes 

regularly for ranking, where the actual values of the probabilities are not relevant—only 

the relative values for examples in the different classes. 

Another advantage of Naive Bayes is that it is naturally an “incremental learner.” An 

incremental learner is an induction technique that can update its model one training 

example at a time. It does not need to reprocess all past training examples when new 

training data become available. 

Incremental learning is especially advantageous in applications where training labels 

are revealed in the course of the application, and we would like the model to reflect this 

new information as quickly as possible. For example, consider creating a personalized 

junk email classifier. When I receive a piece of junk email, I can click the “junk” button 

in my browser. Besides removing this email from my Inbox, this also creates a training 

data point: a positive instance of spam. It would be quite useful if the model that is 

classifying my email could be updated on the fly, and thereby immediately start classi‐ 

fying other similar emails as being spam. Naive Bayes is the basis of many personalized 

spam detection systems, such as the one in Mozilla’s Thunderbird. 

Naive Bayes is included in nearly every data mining toolkit and serves as a common 

baseline classifier against which more sophisticated methods can be compared. We have 

discussed Naive Bayes using binary attributes. The basic idea presented above can be 

extended easily to multi valued categorical attributes, as well as to numeric attributes, 

as you can read about in a textbook on data mining algorithms. 
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p(x) 

A Model of Evidence “Lift” 
“Cumulative Response and Lift Curves” on page 219 presented the notion of lift as a 

metric for evaluating a classifier. Intuitively, lift is the amount by which a classifier 

concentrates the positive examples above the negative examples. Lift measures how 

much more prevalent the positive class is in the selected subpopulation over the prev‐ 

alence in the population as a whole. If the prevalence of hotel bookings in a randomly 

targeted set of consumers 0.01% and in our selected population it is 0.02%, then the 

classifier gives us a lift of 2—the selected population has double the booking rate. 

With a slight modification, we can adapt our Naive Bayes equation to model the different 

lifts attributable to the different pieces of evidence, along with a very straightforward 

way of combining them. The slight modification is to assume full feature independence, 

rather than the weaker assumption of conditional independence used for Naive Bayes. 

Let’s call this Naive-Naive Bayes, since it’s making stronger simplifying assumptions 

about the world. Assuming full feature independence, Equation 9-3 becomes the fol‐ 

lowing for Naive-Naive Bayes: 

 
 p(e1 | c) · p(e2 | c) ⋯ p(ek | c) · p(c) 

p(e1) · p(e2) ⋯ p(ek ) 

 
The terms in this equation can be rearranged to yield: 

Equation 9-4. Probability as a product of evidence lifts 

p(C = c | ) = p(C = c) · liftc(e1) · liftc(e2) ⋯ 

where liftc(x) is defined as: 

 

liftc(x) =
 p(x | c)

 

Consider how we’ll use our Bayesian classifier to classifier a new example E =<e1, e2, ⋯, 

ek>. Starting at the prior probability, each piece of evidence—each feature ei—raises or 

lowers the probability of the class by a factor equal to that piece of evidence’s lift (which 

may be less than one). 

Conceptually, we start off with a number—call it z—set to the prior probability of class 

c. We go through our example, and for each new piece of evidence ei we multiply z by 

liftc(ei). If the lift is greater than one, the probability z is increased; if less than one, z is 

diminished. 

p(c | ) = 
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In the case of our Luxhote example, z is the probability of booking, and it is initialized 

to 0.0001 (the prior probability, before seeing evidence, that a website visitor will book 

a room). Visited a finance site? Multiply the probability of booking by a factor of two. 

Visit a truck-pull site? Multiply the probability by a factor of 0.25. And so on. After 

processing all of the ei evidence bits of E, the resulting product (call that zf) is the final 

probability (belief) that E is a member of class c—in this case, that visitor E will book a 

room. 

Considered this way, it may become clearer what the independence assumption is doing. 

We are treating each bit of evidence ei as independent of the others, so we can just 

multiply z by their individual lifts. But any dependencies among them will result in some 

distortion of the final value, zf. It will end up either higher or lower than it properly 

should be. Thus the evidence lifts and their combining are very useful for understanding 

the data, and for comparing between instances, but the actual final value of the proba‐ 

bility should be taken with a large grain of salt. 

Example: Evidence Lifts from Facebook “Likes” 
Let’s examine some evidence lifts from real data. To freshen things up a little, let’s con‐ 

sider a brand new domain of application. Researchers Michal Kosinski, David Stillwell, 

and Thore Graepel recently published a paper (Kosinski et al., 2013) in the Proceedings 

of the National Academy of Sciences showing some striking results. What people “Like” 

on Facebook 7 is quite predictive of all manner of traits that usually are not directly 

apparent: 

• How they score on intelligence tests 

• How they score on psychometric tests (e.g., how extroverted or conscientious they 

are) 

• Whether they are (openly) gay 

• Whether they drink alcohol or smoke 

• Their religion and political views 

• And many more. 

We encourage you to read the paper to understand their experimental design. You 

should be able to understand most of the results now that you have read this book. (For 

 

 
7. For those unfamiliar with Facebook, it is a social networking site that allows people to share a wide variety 

of information on their interests and activities. Each user has a unique page, and Facebook encourages people 

to connect with other friends on the site. Facebook also has pages devoted to special interests such as TV 

shows, movies, bands, hobbies, and so on. Each such page has a “Like” button, and users can declare them‐ 

selves to be fans by clicking it. Such “Likes” can usually be seen by other friends. 
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example, for evaluating how well they can predict many of the binary traits they report 

the area under the ROC curve, which you can now interpret properly.) 

What we would like to do is to look to see what are the Likes that give strong evidence 

lifts for “high IQ,” or more specifically for scoring high on an IQ test. Taking a sample 

of the Facebook population, if we define our target variable as the binary variable 

IQ>130, about 14% of the sample is positive (has IQ>130). 

So let’s examine the Likes that give the highest evidence lifts…8
 

Table 9-1. Some Facebook page “Likes” and corresponding lifts. 
 

Like Lift Like Lift 

Lord Of The Rings 1.69 Wikileaks 1.59 

One Manga 1.57 Beethoven 1.52 

Science 1.49 NPR 1.48 

Psychology 1.46 Spirited Away 1.45 

The Big Bang Theory 1.43 Running 1.41 

Paulo Coelho 1.41 Roger Federer 1.40 

The Daily Show 1.40 Star Trek 1.39 

Lost 1.39 Philosophy 1.38 

Lie to Me 1.37 The Onion 1.37 

How I Met Your Mother 1.35 The Colbert Report 1.35 

Doctor Who 1.34 Star Trek 1.32 

Howl’s Moving Castle 1.31 Sheldon Cooper 1.30 

Tron 1.28 Fight Club 1.26 

Angry Birds 1.25 Inception 1.25 

The Godfather 1.23 Weeds 1.22 

So, recalling Equation 9-4 above, and the independence assumptions made, we can 

calculate the probability that someone has very high intelligence based on the things 

they Like. If I Like nothing, then my estimated probability of IQ>130 (let’s call that 

High-IQ) is just the base rate in the population: 14%. What if on Facebook I had Liked 

one item, Sheldon Cooper. Then using Equation 9-4, my estimated probability would 

increase by 30% to 0.14 × 1.3 = 18%. If I have three Likes—Sheldon Cooper, Star Trek, 

and Lord of the Rings—then my estimated probability of High-IQ increases to 0.14 × 

1.3 × 1.39 × 1.69 = 43%. 

Of course, there are also Likes that would drag down my probabability of High-IQ. So 

as not to depress you, we won’t list them here. 

 
 

8. Thanks to Wally Wang for his generous help with generating these results. 
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This example also illustrates how it is important to think carefully about exactly what 

the results mean in light of the data generating process. This does not really mean that 

liking The Lord of the Rings is a strong indication that I have very high IQ. It means 

clicking “Like” on Facebook’s page called The Lord of the Rings is a strong indication 

that I have very high IQ. This difference is important: the act of declaring publicly that 

you Like something is different from simply liking it, and the data we have represent an 

instance of the former and not the latter. 

Evidence in Action: Targeting Consumers with Ads 

In spite of the math that appears in this chapter, the calculations are quite simple to 

implement—so simple they can be implemented directly in a spreadsheet. So instead of 

presenting a static example here, we have prepared a spreadsheet with a simple numer‐ 

ical example illustrating Naive Bayes and evidence lift on a toy version of the online ad- 

targeting example. You’ll see how straightforward it is to use these calculations, because 

they just involve counting things, computing proportions, and multiplying and divid‐ 

ing. 

 
The spreadsheet can be downloaded here. 

 

 

The spreadsheet lays out all the “evidence” (website visits for multiple visitors) and 

shows the intermediate calculations and final probability of a ficticious advertising re‐ 

sponse. You can experiment with the technique by tweaking the numbers, adding or 

deleting visitors, and seeing how the estimated probabilities of response and the evi‐ 

dence lifts adjust in response. 

Summary 
Prior chapters presented modeling techniques that basically asked the question: “What 

is the best way to distinguish (segment) target values?” Classification trees and linear 

equations both create models this way, trying to minimize loss or entropy, which are 

functions of discriminability. These are termed discriminative methods, in that they try 

directly to discriminate different targets. 

This chapter introduced a new family of methods that essentially turns the question 

around and asks: “How do different targets generate feature values?” They attempt to 

model how the data were generated. In the use phase, when faced with a new example 

to be classified, they apply Bayes’ Rule to their models to answer the question: “Which 

class most likely generated this example?” Thus, in data science this approach to mod‐ 

eling is called generative, and it forms the basis for a large family of popular methods 

http://www.data-science-for-biz.com/NB-advertising.html
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known as Bayesian methods, because they depend critically on Bayes’ Rule. The litera‐ ture on Bayesian 

methods is both broad and deep, and you will encounter these methods often in data science. 

This chapter focused primarily on a particularly common and simple but very useful Bayesian method 

called the Naive Bayes classifier. It is “naive” in the sense that it models each feature’s effect on the target 

independently, so it takes no feature interactions into account. Because of its simplicity it is very fast 

and efficient, and in spite of its naïveté it is surprisingly (almost embarrassingly) effective. In data 

science it is so simple as to be a common “baseline" method—one of the first methods to be applied to 

any new problem. 

We also discussed how Bayesian reasoning using certain independence assumptions can allow us to 

compute “evidence lifts” to examine large numbers of possible pieces of evidence for or against a 
conclusion. As an example, we showed that “Liking” Fight Club, Star Trek, or Sheldon Cooper on 

Facebook each increases by about 30% our esti‐ mation of the probability that you have a high IQ. If you 

were to Like all three of those, it would more than double our estimate th 
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